

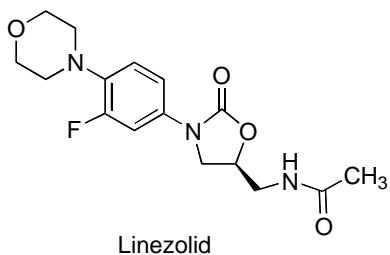
## A facile synthesis of 2-((5*R*)-2-oxo-5-oxazolidinyl)methyl)-1*H*-isoindole-1,3(2*H*)-dione<sup>†</sup>

G Madhusudhan\*<sup>§</sup>, G Om Reddy, J Ramanatham & P K Dubey<sup>◊</sup>

Technology Development Center, Dr. Reddy's Laboratories Ltd., Bollaram Road, Miyapur, Hyderabad 500 049, India

<sup>◊</sup>Department of Chemistry, College of Engineering, J.N.T University, Kukatpally, Hyderabad 500 872, India

Email: guttamadhusudhan@yahoo.com


Received 24 February 2004; accepted (revised) 28 December 2005

Synthesis of enantiomerically pure 2-((5*R*)-2-oxo-5-oxazolidinyl) methyl)-1*H*-isoindole-1,3(2*H*)-dione, a key precursor in the preparation of oxazolidinone class of antibacterial agents starting from (S)-epichlorohydrin has been achieved.

**Keywords:** Oxazolidinone, antibacterial, epichlorohydrin, enantiomerically pure, phthalimide

**IPC:** Int.Cl.<sup>8</sup> C 07 D // A 61 P

Oxazolidinones have emerged as a very important class of compounds in drug development, especially in the area of antibacterials<sup>1</sup> and inhibitors of monoamine oxidase<sup>2</sup>. They also have potent pharmacological effects as cytokine modulators<sup>3</sup>, sigma receptors<sup>4</sup>, psychotropics<sup>5</sup>, antiallergy agents<sup>6</sup>, antibiotics<sup>7</sup>, intermediates in the synthesis of rennin inhibitors<sup>8</sup>,  $\beta$ -lactam and macrolide antibiotics<sup>9</sup>, immunosuppressants<sup>10</sup> and in various other applications<sup>11</sup>.



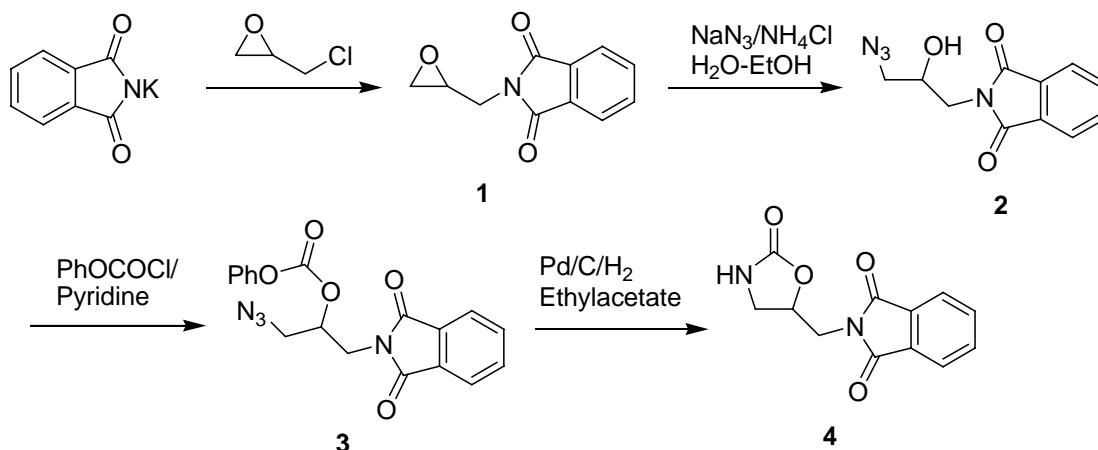
Oxazolidinones are the first new class of synthetic antibacterial agents introduced ever since the discovery of quinolones more than 30 years ago. The oxazolidinone antibacterial agents show activity against gram-positive bacteria. Pharmacia group discovered Linezolid<sup>1b,c</sup>, which was found to be the first candidate among oxazolidinones which were effective against serious attacks by gram-positive

human pathogens, e.g. methicillin-resistant *Staphylococcus aureus* (MRSA) and vancomycin-resistant enterococci (VRE) without side effects like severe toxicity. Linezolid is the first drug of this class approved by FDA under the trade name Zyvox in April 2000. In this class, over 250 molecules having antibacterial activity are in different stages of clinical trials. Most of the molecules, including Linezolid, comprise 5-aminomethyl 3-aryl oxazolidinone moiety as the basic skeleton.

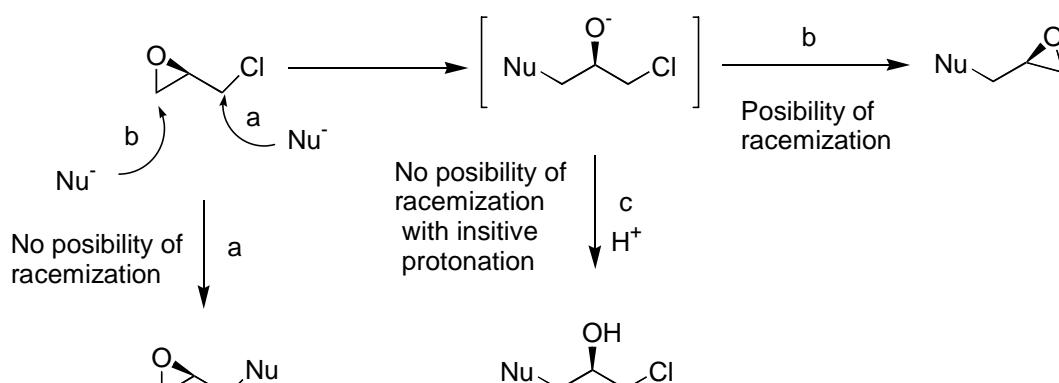
A common strategy for preparation of 5-aminomethyl-3-aryl oxazolidinone in the Linezolid is deprotonation of the aryl carbamate with BuLi and reaction with (*R*)-glycidylbutyrate to give the corresponding 5(S)-hydroxymethyloxazolidinone<sup>1c</sup>. The lithium anion of the carbamate was necessary to obtain a useful yield of the desired oxazolidinones. In an alternative strategy, the aryl oxazolidinones could be obtained from aryl isocyanates and (*R*)-glycidylbutyrate<sup>1a</sup>. The preparation of aryl isocyanate is cumbersome from all substituted aryl amines. From the literature, it is evident that the 2-((5*R*)-2-oxo-5-oxazolidinyl)methyl)-1*H*-isoindole-1,3(2*H*)-dione could be useful for the preparation of 5-aminomethyl-3-aryl oxazolidinone moiety<sup>12</sup>. It provides access to various arylsubstituted oxazolidinone analogs by coupling with corresponding arylhalides, which is already well documented<sup>13</sup>. The 2-((5*R*)-2-oxo-5-oxazolidinyl)methyl)-1*H*-isoindole-1,3(2*H*)-dione was prepared previously from (*R*)-hydroxymethyl-2-oxazolidinones<sup>12</sup>, which was prepared in a multi step synthesis

<sup>†</sup> DRL Publication No. 424

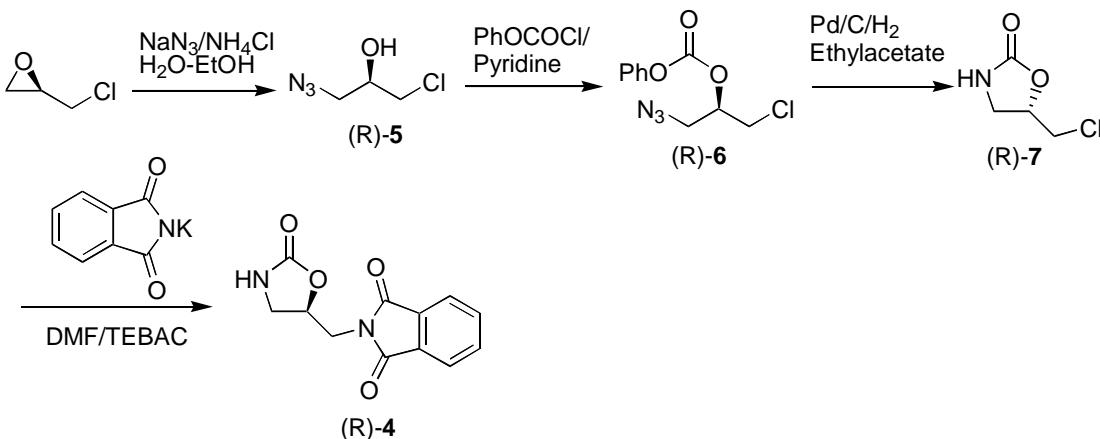
<sup>§</sup> Current address: Ingent Laboratories Pvt. Ltd.  
A GVK BIO company), 28A, IDA, Nacharam,  
Hyderabad 500 076, India.


from D-malic acid<sup>14</sup>. In this paper is reported a convenient procedure for the preparation of enantioselectively pure 2-((5R)-2-oxo-5-oxazolidinyl)methyl)-1H-isoindole-1,3(2H)-dione from (R)-epichlorohydrin without racemization *via* (R)-chloromethyl-2-oxazolidinone.

## Results and Discussion


N-(2,3-epoxypropyl)phthalimide 1 was prepared by condensing epichlorohydrin with potassium phthalimide<sup>15</sup>. Following the classical method<sup>16</sup>, the compound 1 was reacted with  $\text{NaN}_3$  in  $\text{H}_2\text{O}/\text{EtOH}$  mixture in mild acidic conditions using  $\text{NH}_4\text{Cl}$  to obtain corresponding azido alcohol 2. The alcohol 2 was reacted with phenyl chloroformate in DCM with pyridine as base to give phenyl carbonate derivative 3. Further, it was converted to 2-(2-oxo-5-oxazolidinyl)methyl)-1H-isoindole-1,3(2H)-dione 4 by reductive cyclization using Pd/C. Earlier, the reductive cyclization<sup>17</sup> was studied using various carbonate derivatives and among them phenyl carbonate gives the desired cyclization (**Scheme I**).

Later, it was decided to carry out stereoselective synthesis of 2-((5R)-2-oxo-5-oxazolidinyl)methyl)-1H-isoindole-1,3(2H)-dione from chiral N-(2,3-epoxypropyl)- phthalimide. Accordingly, the (R)-epichlorohydrin was reacted with phthalimide in the presence of  $\text{K}_2\text{CO}_3$  in  $\text{CH}_3\text{CN}$ . It was possible to isolate only the racemised N-(2,3-epoxypropyl)-phthalimide. The racemization was minimized to a large extent by reacting potassium phthalimide and (R)-epichlorohydrin in the absence of solvent and base  $\text{K}_2\text{CO}_3$ . Under these conditions racemisation to the extent of 7-15% was observed. It is obvious that racemization can not be avoided totally while condensing a nucleophile (like phthalimide and azide) with the epichlorohydrin under dry conditions. The nucleophilic attack on epichlorohydrin leading to racemization is shown in the mechanism (**Scheme II**). The (R)-N-(2,3-epoxypropyl)phthalimide was prepared earlier from (R)-glycidol<sup>18</sup>.


Finally, a stereoselective synthesis of 2-((5R)-2-oxo-5-oxazolidinyl)methyl)-1H-isoindole-1,3(2H)-dione from (R)-epichlorohydrin was accomplished



**Scheme I**



**Scheme II**



Scheme III

through (*R*)-chloromethyl-2-oxazolidinone (*R*)-7. The (*R*)-epichlorohydrin was reacted with  $\text{NaN}_3$  in  $\text{H}_2\text{O}/\text{EtOH}$  mixture using  $\text{NH}_4\text{Cl}$  to obtain (*2R*)-1-azido-3-chloropropane-2-ol ((*R*)-5) without racemization. Compound (*R*)-5 was reacted with phenylchloroformate in pyridine to obtain the phenyl carbonate derivative (*R*)-6. (*R*)-6 was further converted to (*R*)-chloromethyl-2-oxazolidinones ((*R*)-7) by reductive cyclization using  $\text{Pd/C}$ . Compound (*R*)-7 was reacted with potassium phthalimide in DMF under PTC conditions to obtain the desired 2-((5*R*)-2-oxo-5-oxazolidinyl)methyl)-1*H*-isoindole-1,3(2*H*)-dione ((*R*)-4). This sequence of reactions has been illustrated in Scheme III.

To conclude, a stereoselective method was developed for the preparation of 2-((5*R*)-2-oxo-5-oxazolidinyl)methyl)-1*H*-isoindole-1,3(2*H*)-dione, a very important moiety in the oxazolidinone class of antibacterial agents.

## Experimental Section

Melting points were determined on Buchi 535 melting point apparatus and are uncorrected. IR spectra were recorded in  $\text{KBr}/\text{CHCl}_3$  on a Perkin-Elmer 1650 Spectrometer.  $^1\text{H}$  and  $^{13}\text{C}$  NMR were recorded in  $\text{CDCl}_3$  using Varian Gemini 200 MHz spectrometer (chemical shifts in  $\delta$  ppm) with TMS as internal standard and mass spectra were recorded on a HP-5989A spectrometer. The Analytical Research Department of Dr. Reddy's Research Foundation carried out all analytical work. All the organic extracts were dried over sodium sulfate after work-up.

The dry reactions were carried out under nitrogen atmosphere with magnetic/mechanical stirring. Unless otherwise mentioned, all the solvents and reagents used were of LR grade. TLC was performed on

precoated silica-gel plates, which were visualized using UV light and sulphuric acid/ethanol (5:95) charring. Flash column-chromatography was carried out on silica gel (230-400 mesh) unless otherwise stated.

**General procedure for the preparation of azido alcohols.** To a cooled solution of sodium azide (16.86 g, 0.259 moles) and ammonium chloride (13.87 g, 0.259 moles) in water (80 mL), a solution of oxirane ((*R*)-epichlorohydrin, 1 (0.216 moles) in ethanol (20 mL) was added. The reaction mixture was stirred at  $0^\circ\text{C}$  for 1 h and then allowed to come to RT and maintained overnight. The reaction mixture was diluted with water (80 mL) and extracted with ethyl acetate ( $3 \times 100$  mL). The combined extract was washed with water ( $3 \times 75$  mL) and concentrated to get the respective azido alcohol (**2** or (*S*)-5). Crude **2** was stirred in pet. ether to afford pure **2** as a white solid (m.p.  $64\text{--}6^\circ\text{C}$ ). The (*S*)-5 was obtained after flash column chromatography as a liquid ( $[\alpha]^{25}_D = +1.7$  (C: 1.0,  $\text{CHCl}_3$ )). The spectral characterization data for **2** and (*R*)-5 are given in Table I.

**General procedure for the preparation of phenyl carbonate derivative.** To a solution of azido alcohol (**2** or **5**, 0.0369 moles), pyridine (5 mL) and DCM (50 mL), phenylchloroformate (6.35 g, 0.04059 moles) was added dropwise at  $0^\circ\text{C}$ . After stirring at  $0^\circ\text{C}$  for 1 h, the reaction mixture was poured into water and the DCM layer was separated. The aqueous layer was extracted with DCM (100 mL) and the combined organic extract was washed with dil.  $\text{HCl}$  (20 mL) followed by water ( $2 \times 20$  mL) and then concentrated to get the corresponding phenyl carbonate derivative (**3** or (*R*)-6). The compound **3** was taken for further reductive cyclization without purification. The (*R*)-6 was obtained after flash

**Table I**—Spectral characterization data of various compounds prepared

| Compd                              | Yield (%) | <sup>1</sup> H NMR<br>δ, ppm                                                                                                                                                                                               | <sup>13</sup> CNMR<br>δ, ppm                                 | MS<br>m/z<br>(M+1) |
|------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|
| <b>2</b>                           | 74.2      | 3.1 (s, 1H, -OH, D <sub>2</sub> O exchangeable), 3.5 (m, 2H, -CH <sub>2</sub> N <sub>3</sub> ), 3.9 (m, 2H, -CH <sub>2</sub> N-), 4.2 (m, 1H, -CHOH), 7.8-8.0 (m, 4H, Ar-H).                                               | 41.52, 54.43, 69.13, 123.39, 131.64, 134.16, 168.61.         | 247                |
| <b>4</b><br>( <i>R</i> )- <b>4</b> | 92<br>84  | 3.5 (m, 1H, -CH-H-NH-), 3.75 (t, 1H, -CH-H-NH-), 3.9 (dd, 1H, -CH-H-N-, J=5.6, 14.23), 4.1 (dd, 1H, -CH-H-N-, J=7.0, 14.23), 4.95 (m, 1H, -CHO-), 5.7 (s, 1H, -NH, D <sub>2</sub> O exchangeable), 7.7-7.95 (m, 4H, Ar-H). | 40.42, 43.32, 72.48, 123.10, 131.34, 133.94, 158.49, 167.54. | 247                |
| ( <i>R</i> )- <b>5</b>             | 65        | 2.4 (s, 1H, -OH, D <sub>2</sub> O exchangeable), 3.28-3.45 (m, 4H, -CH <sub>2</sub> N <sub>3</sub> and -CH <sub>2</sub> Cl), 4.0 (m, 1H, -CHOH).                                                                           | 46.02, 53.28, 70.11                                          | 136                |
| ( <i>R</i> )- <b>6</b>             | 91        | 3.65-3.8 (m, 4H, -CH <sub>2</sub> N <sub>3</sub> and -CH <sub>2</sub> Cl), 5.05 (m, 1H, -CHO-), 7.15-7.45 (m, 5H, -Ar-H).                                                                                                  | 41.87, 50.53, 75.63, 120.69, 126.21, 129.42, 150.69, 152.59. | 256                |
| ( <i>R</i> )- <b>7</b>             | 90        | 3.45-3.8 (m, 4H, -CH <sub>2</sub> NH- and -CH <sub>2</sub> Cl), 4.8 (m, 1H, -CHO-), 6.3 (s, 1H, -NH, D <sub>2</sub> O exchangeable).                                                                                       | 43.37, 44.57, 74.61, 159.38.                                 | 136, 138<br>(M+3)  |

column chromatography as a syrup ( $[\alpha]^{25}_D = -19.5$  (C: 1.0, CHCl<sub>3</sub>)). The spectral characterization data for (*R*)-**6** are given in **Table I**.

**General procedure for the reductive cyclization.** A solution of phenylcarbonate derivative (**3** or (*R*)-**6**) (0.0234 mole) in ethyl acetate (60 mL) was hydrogenated in a Parr apparatus in the presence of 5% Pd/C (10 % w/w) at 10-15 psi H<sub>2</sub> pressure for about 6 h. The catalyst was filtered out on a pad of celite and the filtrate was concentrated to get the corresponding cyclized compound (**4** or (*R*)-**7**). The compound **4** was subjected to purification in IPA to afford racemic **4** as a white solid (m.p. 206-08°C). The (*R*)-**7** was purified by flash column chromatography to obtain pure (*R*)-**7** as white solid (m.p. 75-7°C;  $[\alpha]^{25}_D = -16.1$  (C: 0.7, CH<sub>2</sub>Cl<sub>2</sub>)). The spectral characterization data for **4** and (*R*)-**7** are given in **Table I**.

**Preparation of 2-((5*R*)-2-oxo-5-oxazolidinyl)methyl)-1*H*-isoindole-1,3(2*H*)-dione.** To a solution of (*R*)-**7** (0.5 g, 0.0037 moles) in DMF (5 mL), potassium phthalimide (0.683 g, 0.0037 moles) and catalytic amount of triethylbenzylammonium chloride were added and the mixture stirred at 80°C for 12 h. The reaction mixture was poured into water (20 mL) and extracted with ethyl acetate (3×30 mL). The combined organic extract was washed with water (2×20 mL) and evaporated. The obtained solid was stirred in IPA (15 mL) to get (*R*)-**4** as a solid (m.p. 195-97°C;  $[\alpha]^{25}_D = 67.1$  (C: 1.0, CHCl<sub>3</sub>)). The spectral characterization data for (*R*)-**4** are given in **Table I**.

### Acknowledgements

The authors are thankful to Dr. Reddy's Group of Companies for supporting this work. Co-operation

extended by all the colleagues of the analytical R&D and pharmacology divisions is gratefully acknowledged.

### References

- (a) Gregory W A, Brittelli D R, Wang C L J, Wuonola M A, McRipley R J, Eustice D C, Eberly V S, Bartholomew P T, Slee A M & Forbes M, *J Med Chem*, **32**, **1989**, 1673.  
(b) Brickner S J, Hutchinson D K, Barbachyn M R, Garmon S A, Grega K C, Hedges S K, Manninen P R, Toops D S, Ulanowicz D A, Kilburn J O, Glickman S, Zurenko G E & Ford C, *35<sup>th</sup> Interscience Conference on Antimicrobial Agents and Chemotherapy*, San Francisco, September **1995**, F 208, p. 149.
- (c) Brickner S J, Hutchinson D K, Barbachyn M R, Manninen P R, Ulanowicz D A, Garmon S A, Grega K C, Hedges S K, Toops D S, Ford C Z & Zurenko G E, *J Med Chem*, **39**, **1996**, 673.
- 2 (a) Wouters J, *Current Medicinal Chemistry*, **5**, **1998**, 137, and references cited therein.  
(b) Mai A, Artico M, Esposito M, Sbardella G, Massa S, Befani O, Turini P, Giovannini V & Mondovi B, *J Med Chem*, **45**, **2002**, 1180.
- 3 Hideaki K, Masayuki M, Hiroyuki K, Tetsu-Ichiro M, Kimiko K & Hiroyuki O, *J Org Chem*, **64**, **1999**, 1052, and references cited therein.
- 4 Gottschlich C & Ruecker H, *Biorg Med Chem Lett*, **2**(2), **1992**, 165.
- 5 Jarreau F X, Koenig J J & Rovei V, *Eur Pat Appl EP* **1992**, 511031; *Chem Abstr*, **118**, **1993**, 147549z.
- 6 Walsh D A & Yanni J M, *US patent* **1992**, 5086055; *Chem Abstr*, **116**, **1992**, 188072r.
- 7 Brittelli D R, Eustine D C, Batholomev D T, Slee A M, Feldmann P A, Braun L J & Borkowski J J, *Drugs Exp Chim Res*, **16**(4), **1990**, 149.
- 8 Albright J D & Sun S W, *Eur Pat Appl EP* **1992**, 473175; *Chem Abstr*, **118**, **1993**, 255346q.
- 9 Evans D A, Ny H P & Rieger D L, *J Am Chem Soc*, **115**, **1993**, 11446.
- 10 Jones T K, Reamer R A, Desmond R & Mills S G, *J Am Chem Soc*, **112**, **1990**, 2998.

11 (a) Seneci P, Caspani M, Ripamonti F & Ciabatti R, *Perkin Trans*, 1, **1994**, 2345.  
(b) Macor J E & Wythes M J, *PCT Int Appl WO* **1993**, 9320073; *Chem Abstr*, 120, **1994**, 106761k.  
(c) Afifi N A & Ramadan A, *Vet Med J Giza*, 37, **1989**, 299.  
(d) Ishizuka T, Ishibuchi S & Kunieda T, *Tetrahedron*, 49, **1993**, 1841.

12 (a) Madar D J, Kopecka H, Pireh D, Pease J, Pliushchev M, Sciotti R J, Wiedeman P E & Djuric S W, *Tetrahedron Lett*, 42, **2001**, 3681.  
(b) Sciotti R, Pliushchev M, Wiedeman P E, Balli D, Flamm R, Nilius A M, Marsh K, Stolarik D, Olly R, Ulrich R & Djuric S W, *Bioorganic and Medicinal Chemistry Letters*, 12, **2002**, 2121.

13 (a) Klapars A, Antilla J C, Huang X & Buchwald S L, *J Am Chem Soc*, 123, **2001**, 7727.  
(b) Klapars A, Antilla J C, Huang X & Buchwald S L, *J Am Chem Soc*, 124, **2002**, 7421.

(c) Mallesham B, Rajesh B M, Rajamohan Reddy P, Srinivas D & Trehan S, *Org Lett*, 5, **2003**, 963, and references cited therein.  
(d) Shakespeare W C, *Tetrahedron Lett*, 40, **1999**, 2035.  
(e) Yin J & Buchwald S L, *Org Lett*, 2, **2000**, 1101.

14 (a) Danielmeier K & Steckhen E, *Tetrahedron Asymmetry*, 6, **1995**, 1181.  
15 Hayashi Y, Kayatani T, Sugimoto H, Suzuki M, Inomata K, Uehara A, Mizutani Y, Kitagawa T & Maeda Y, *J Am Chem Soc*, 117, **1995**, 11220.

16 Madhusudhan G, Om Reddy G, Ramanathan J & Dubey P K, *Indian J Chem*, 44B, **2005**, 1236.

17 Madhusudhan G, Om Reddy G, Ramanathan J & Dubey P K, *Indian J Chem*, 43B, **2004**, 2683.

18 (a) Gutcait A, Wang K C, Liu H W & Chern J W, *Tetrahedron Asymmetry*, 7, **1996**, 1641.  
(b) Chern J W, Chang J Y, Usifoh C O & Gutsait A, *Tetrahedron Lett*, 39, **1988**, 8483.  
(c) Chern J W, Gutcait A, Liu H W & Wang K C, *US Patent* **1999**, 5932584.